Development of Torque Sensor with High Sensitivity for Joint of Robot Manipulator Using 4-Bar Linkage Shape
نویسندگان
چکیده
The torque sensor is used to measure the joint torque of a robot manipulator. Previous research showed that the sensitivity and the stiffness of torque sensors have trade-off characteristics. Stiffness has to be sacrificed to increase the sensitivity of the sensor. In this research, a new torque sensor with high sensitivity (TSHS) is proposed in order to resolve this problem. The key idea of the TSHS comes from its 4-bar linkage shape in which the angular displacement of a short link is larger than that of a long link. The sensitivity of the torque sensor with a 4-bar link shape is improved without decreasing stiffness. Optimization techniques are applied to maximize the sensitivity of the sensor. An actual TSHS is constructed to verify the validity of the proposed mechanism. Experimental results show that the sensitivity of TSHS can be increased 3.5 times without sacrificing stiffness.
منابع مشابه
Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors
Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...
متن کاملUsing the Matrix Method to Compute the Degrees of Freedom of Mechanisms
In this paper, some definitions and traditional formulas for calculating the mobility of mechanisms are represented, e.g. Grubler formula, Somov - Malyshev formula, and Buchsbaum - Freudenstei. It is discussed that there are certain cases in which they are too ambiguous and incorrect to use. However, a matrix method is suggested based on the rank of the Jacobian of the mechanism and its applica...
متن کاملJoint Torque Sensory in Robotics
Joint Torque sensory Feedback (JTF) can substantially improve the performance of a robotic system. JTF makes it possible to achieve dynamic control of a robotic manipulator without the need for modeling its link dynamics. Moreover, it has been proved that JTF can achieve a precise torque tracking in a manipulator joint by compensating the e ect of joint friction and actuator nonlinearities. Des...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملCONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY
A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016